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Uniform Porous Bed by a Surface Discontinuity 
Due to Inertial Surfaces in Presence of Surface 
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Abstract – The phenomenon of scattering of water waves by a surface discontinuity over uniform porous sea-bottom of finite depth is 
investigated in the framework of linearized water wave theory. The surface discontinuity is thought of as originating due to two vast floating 
inertial surfaces of different materials having different densities. The inertial surfaces are considered to be subject to surface tension. The 
eigen function matching technique is used as the method of solution. Hydrodynamic parameters of interest such as reflection and 
transmission coefficients are obtained by employing residue calculus method. These coefficients are computed numerically by considering 
different values of the porosity parameter and for a fixed value of surface tension and the results are depicted graphically. 
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1  INTRODUCTION 
The problem of water wave scattering by obstacles 

situated at the bed in a finite depth of water has been 
studied in the framework of linearised theory by several 
scientists over a last few decades. Some of the earliest 
contributors in this subject were Lamb[1], Stoker[2], 
Kreisel[3] and Davies[4]. Basu and Mandal [5] studied the 
water wave scattering problem in presence of bottom 
undulation and surface tension in the free surface using 
perturbation expansion in terms of bed undulation 
parameter. 

Another class of problem is that of water wave 
scattering in presence of a discontinuity at the upper 
surface of water. A discontinuity in the upper surface or 
elsewhere may occur when there is a difference of wave 
number of the incoming waves of certain frequency from a 
sudden change in the constant width of the region. 
Therefore, there will be two different boundary conditions 
on the either side of the ocean. The upper surface of the 
ocean may be covered by two vast sheets of floating ice 
plate or mat of different thickness or materials, broken ice-
cover, semi-infinite floating dock etc. The presence of 

obstacles or materials of different densities or properties 
yields a change in the boundary condition due to difference 
in wave number. Evans and Linton [6] considered the 
problem of water wave scattering by a surface discontinuity 
in an uniform finite depth of water. They obtained the 
reflection and transmission coefficients by employing 
technique of residue calculus. Mandal and De[7] considered 
the problem of water wave scattering by a small undulation 
at the bottom in presence of upper surface discontinuity 
and arrived at the energy coefficients using perturbation 
method and Green’s integral theorem. 

The problem of water wave interaction over a 
permeable bed or porous bottom is also investigated by 
several researches in recent times. If the bottom is 
composed of some specific type of porous materials, rigid 
or non-rigid, the effect of porosity on the hydrodynamic 
coefficients is another important aspect of study. A porous 
sea bottom or structure may be rigid or non-rigid. The only 
difference is that a rigid or impermeable type porous 
structure or bottom does not allow the fluid to penetrate 
into it. The water wave interaction with the porous sea bed 
was studied by Chakrabarti [8], Mase and Takeba [9], Silva, 
Salles and Palacio [10], Jeng [11], and many others. Martha 
and Bora [12] applied Fourier transform to analyse 
scattering waves by small undulation on a porous sea-bed. 
The flow of fluid into the porous media or the presence of 
porous substances in the bottom leads to different 
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phenomena like energy dissipation, wave damping or 
decaying of wave height reaching towards the coast etc. 

In the present paper, we consider the problem of 
scattering of an incoming wave train in presence of a 
discontinuity at the upper surface of the ocean. The upper 
surface is assumed to be covered by two semi-infinite 
inertial surfaces subject to surface tension. The inertial 
surfaces are considered to be of negligible thickness and are 
composed of different materials and densities. Hence, there 
will be a difference of wave number of the incoming wave 
train. If the problem is formulated mathematically, there 
will be two different boundary conditions on either side of 
the discontinuity of the upper surface of the ocean. The 
water is of uniform finite depth and the bed is composed of 
some specific kind of rigid porous material which is 
characterized by a known porosity parameter G’. The 
incoming wave train is partially reflected and partially 
transmitted through the ocean. The method of residue 
calculus of the complex variable theory (cf.[13]) is 
employed here to determine the reflection and transmission 
coefficients. Evans and Linton [6] also followed the same 
technique to obtain these hydrodynamic coefficients for 
uniform non-porous bottom of finite depth. Here, the effect 
of porosity on the reflection and transmission coefficients 
are investigated numerically and corresponding graphs are 
plotted against the wave number of the incident wave for 
different values of the porous parameter and for a fixed 
value of the surface tension parameter. 
2  MATHEMATICAL FORMULATION 

We consider the two dimensional motion in case of 
uniform finite depth of water. A rectangular cartesian 
coordinate system is chosen in which ݕ −axis is taken 
vertically downwards in the fluid region. The discontinuity 
is taken at the original by assuming that the upper surface 
of the ocean is covered by two vast inertial surfaces of 
different materials and of different densities ܧଵ,ߩ and ܧଶߩ 
respectively. Moreover, the inertial surfaces are subject to a 
fixed value of the surface tension with parameter ܯ given 
by ܯ =  where ݃ is the acceleration due to gravity, ܶ is ݃ߩ/ܶ
the coefficient of surface tension, ߩ is the density of water. 
The ocean bottom is composed of some specific kind of 
porous materials characterized by the porosity parameter 
ᇱܩ where ′ܩ = ఈ

√ఔ
, the quantity ߙ is dimensionless constant 

which depends on the structure of the porous medium and 
 is the permeability of the porous medium. Let a train of ߥ
surface water wave be incident from negative infinity, 
which is partially reflected and partially transmitted 
through the ocean. Assuming that the fluid flow is 
irrotational and the motion is simple harmonic in time ݐ 

with angular frequency ߱, it can be described by a velocity 
potential ߰(ݔ, ,ݕ (ݐ = ,ݔ)߮}ܴ݁ ,ݔ)߮ ௜ఠ௧}, whereି݁(ݕ  (ݕ
satisfies the two dimensional Laplace equation: 

∇ଶ߮ = 0 in the entire fluid region (1) 
The upper surface boundary conditions taking surface 

tension parameter ܯ into account, are given by: 
ଵ߮ܭ + ߮௬ ௬௬௬߮ܯ+ = 0 on ݕ = ݔ,0 < 0 (2) 
+ଶ߮ܭ ߮௬ + ௬௬௬߮ܯ = 0 on ݕ = ݔ,0 > 0 (3) 
This produces a discontinuity in the upper surface 

boundary conditions at the point (0,0) where 

ଵܭ = ௄
ଵିாభ௄

ଶܭ , = ௄
ଵିாభ௄

ଶܧଵܧ ,  < ௚
ఠమ and ܭ = ఠమ

௚
 . 

The edge condition is given by: 

ݎ
భ
మ∇߮ = 0(1) as ݎ = ଶݔ} + {ଶݕ

భ
మ → 0  (4) 

The sea-bottom boundary condition is given by: 
߮௬ ᇱ߮ܩ− = 0 on ݕ = ℎ  (5) 
The far field behavior of ߮(ݔ,  :is described by (ݕ

ቊ~(ݕ,ݔ)߮
ܶ݁௜௦బ௫߰଴

ଶ(ݕ)																			ܽݏ	ݔ → ∞
(݁௜௞బ௫ + ܴ݁ି௜௞బ௫)߰଴ଵ(ݕ)		ܽݏ	ݔ → −∞	

ቋ  (6) 

where 

߰଴
ଵ(ݕ) = ଴ܰ

ଵ ቂܿݏ݋ℎ݇଴(ℎ − (ݕ − ீᇲ

௞బ
ℎ݇଴(ℎ݊݅ݏ −  , ቃ(ݕ

߰଴
ଶ(ݕ) = ଴ܰ

ଶ ቂܿݏ݋ℎݏ଴(ℎ − (ݕ − ீᇲ

௦బ
଴(ℎݏℎ݊݅ݏ −   ቃ(ݕ

and 

଴ܰ
ଵ = ଶ௞బඥ௞బ

ටଶ௞బቀீᇲିீᇲ
మ௛ା௞బమ௛ቁିଶீᇲ௞బ௖௢௦௛ଶ௞బ௛ା(௞బమାீᇲ

మ)௦௜௡௛ଶ௞బ௛
  

 ଴ܰ
ଶ = ଶ௦బඥ௦బ

ටଶ௦బቀீᇲିீᇲ
మ௛ା௦బమ௛ቁିଶீᇲ௦బ௖௢௦௛ଶ௦బ௛ା(௦బమାீᇲ

మ)௦௜௡௛ଶ௦బ௛
  

Here, ݁௜௞బ௫߰଴
ଵ(ݕ) represents the incident wave field, ܴ 

and ܶ are respectively the unknown reflection and 
transmission coefficients to be determined. ݇଴ and ݏ଴ are the 
real positive roots (cf. McIver [14]) of the following two 
transcendental equations in terms of ߣ : 

ቀߣ ଷߣܯ+ + ௄భீᇱ
ఒ
ቁ ℎߣℎ݊ܽݐ = ଵܭ + ᇱܩ +  , ଶߣܯ′ܩ

ቀߣ ଷߣܯ+ + ௄మீᇱ
ఒ
ቁ ℎߣℎ݊ܽݐ = ଶܭ + ᇱܩ +  . ଶߣܯ′ܩ

3  SURFACE DISCONTINUITY : ENERGY IDENTITY 

RELATION 
As mentioned earlier, the difference in the wave number 

could arise due to change in the constant width of the 
region or sudden change in the boundary condition. The 
energy identity |ܴ|ଶ + |ܶ|ଶ = 1 is not followed in this form 
because of the presence of discontinuity at the upper 
surface boundary condition at the junction of the two 
inertial surfaces, i.e. at ݔ = 0. However, the modified 
energy identity has been formulated using Green’s integral 
theorem by Evans and Linton [6]. Here we reproduce the 
same energy identity in case of uniform porous bottom. 
Two distinct types of solutions can be considered 
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describing waves incident from either ݔ → −∞ or ݔ → ∞ 
respectively and these waves are partially reflected and 
partially transmitted from ݔ = 0. 

When the wave train is incident from negative infinity 
direction, 

,ݔ)߮  ቊ~(ݕ
ܶ݁௜௦బ௫߰଴

ଶ(ݕ)																				ܽݏ	ݔ → ∞
(݁௜௞బ௫ + ܴ݁ି௜௞బ௫)߰଴

ଵ(ݕ)		ܽݏ	ݔ → −∞	
ቋ (7) 

And when the wave train is incident from ݔ → +∞ 

,ݔ)߯ ቊ~(ݕ
௜௦బ௫߰଴݁ݐ

ଶ(ݕ)																											ܽݏ	ݔ → −∞
(݁௜௞బ௫ + ௜௞బ௫)߰଴ି݁ݎ

ଵ(ݕ)			ܽݏ	ݔ → ∞	
ቋ  (8) 

Employing Green’s integral theorem for the two 
functions ߯(ݔ,  bounded by ܮ along a contour ,(ݕ,ݔ)߮ and (ݕ
the lines 
ݕ = 0,−ܺ ≤ ݔ ≤ ܺ; ݔ = ±ܺ, 0 ≤ ݕ ≤ ℎ; ݕ = ℎ,−ܺ ≤ ݔ ≤ ܺ	(ܺ > 0)  

we get, 

∮ ൫߮߯ఎ − ߮ఎ߯൯݈݀ = 0௅   (9) 
where ߟ is the outward normal to the line element ݈݀. 

There is no contribution to the integral from the part 
0 < ݕ < ℎ,ݔ = 0 and ݕ = ℎ,−ܺ ≤ ݔ ≤ ܺ	(ܺ > 0). Now using 
the far field conditions (7) and (8), we get, 

|ݐ|ߙ = |ܶ|.  (10) 
The following relations can be obtained by choosing the 

functions ߮, ത߮;	 ߯̅,߯ and ߮, ߯̅ in turn, in place of ߮,߯ in (9) 
respectively. 

−1)ߙ |ܴ|ଶ) = |ܶ|ଶ,  (11) 
−1)ߙ (ଶ|ݎ| =  ଶ, (12)|ݐ|
|ݎ||ܴ|ߙ + |ݐ||ܶ| = 0, (13) 
where ߙ = ௞బ

௦బ
. Now eliminating |௥|

|௧|
, we obtain, 

|ܴ|ଶ + ଵ
ఈ

|ܶ|ଶ = 1.  (14) 
The above relation holds good in absence of the 

discontinuity at ݔ = 0 in the form 
|ܴ|ଶ + |ܶ|ଶ = 1  (15) 
which is the well known energy identity. 

4  METHOD OF SOLUTION: EIGEN FUNCTION 

MATCHING TECHNIQUE 
We consider the orghogonal depth eigen functions for 

the two regions (ݔ < 0	and	ݔ > 0) respectively as: 

߰௡ଵ(ݕ) = ௡ܰ
ଵ ቂܿ݇ݏ݋௡(ℎ − (ݕ − ீᇲ

௞೙
௡(ℎ݇݊݅ݏ −  , ቃ(ݕ

߰௡ଶ(ݕ) = ௡ܰ
ଶ ቂܿݏݏ݋௡(ℎ − (ݕ − ீᇲ

௦೙
௡(ℎݏ݊݅ݏ −   ቃ(ݕ

where 

௡ܰ
ଵ = ଶ௞೙ඥ௞೙

ටଶ௞೙ቀீᇲିீᇲ
మ௛ା௞೙మ௛ቁିଶீᇲ௞೙௖௢௦ଶ௞೙௛ା(௞೙మାீᇲ

మ)௦௜௡௞೙௛
  

 ௡ܰ
ଶ = ଶ௦೙ඥ௦೙

ටଶ௦೙ቀீᇲିீᇲ
మ௛ା௦೙మ௛ቁିଶீᇲ௦೙௖௢௦ଶ௦೙௛ା(௦೙మାீᇲ

మ)௦௜௡௦೙௛
  

and ݇௡, ݏ௡ (݊ = 1,2,3 … . ) are given by the following two 
equations: 

ቀ݇௡ ௡ଷ݇ܯ− −
௄భீᇱ
௞೙
ቁ +௡ℎ݇݊ܽݐ ଵܭ) + ᇱܩ (௡ଶ݇ܯᇱܩ− = 0  

ቀݏ௡ ௡ଷݏܯ− −
௄మீᇱ
௦೙
ቁ ௡ℎݏ݊ܽݐ + ଶܭ) + ᇱܩ (௡ଶݏܯᇱܩ− = 0.  

The potential function ߮(ݔ,  can now be expanded for (ݕ
two different regions in terms of orthogonal depth eigen 
functions in the form given by 

,ݔ)߮ (ݕ = ൜
∑ ݔ	ݏܽ																											(ݕ)௡݁ି௦೙௫߰௡ଶܤ > 0ஶ
௡ୀ଴

݁௜௞బ௫߰଴
ଵ(ݕ) + ∑ ݔ	ݏܽ			(ݕ)௡݁௞೙௫߰௡ଵܣ < 0,ஶ

௡ୀ଴
 (16) 

where 
଴ܣ = ܴ 
଴ܤ = ܶ 

and ܣ௡, ܤ௡ (݊ = 1,2, … ) are the unknown constants. 
The matching conditions at ݔ = 0 for ߮(ݕ,ݔ) and the 

orthogonality of the depth eigen functions produce the 
following two systems of linear equations: 
∑ ௏೙

௦೙ି௞೘
= ଴௠ஶߜܣ

௡ୀଵ ,  (17) 

∑ ௎೙
௞೙ି௦೘

= ଴ܰ
ଵ ቂܿݏ݋ℎ݇଴(ℎ − (ݕ − ீᇲ

௞బ
ℎ݇଴(ℎ݊݅ݏ − ቃ(ݕ ቂ ோబ

௜௞బା௦೘
− ଵ

௜௞బି௦೘
ቃஶ

௡ୀଵ  

 (18) 
where 

௡ܸ = ௡ܤ ௡ܰ
ଶ ቂܿݏݏ݋௡(ℎ − (ݕ − ீᇲ

௦೙
௡(ℎݏ݊݅ݏ −  ,ቃݕ

ܣ = ଶ௜௞బ

(௄మି௄భ)ேబభ൤௖௢௦௛௞బ(௛ି௬)ିಸ
ᇲ

ೖబ
௦௜௡௛௞బ(௛ି௬)൨

  

and ܷ௡ = ௡ܣ ௡ܰ
ଵ[ܿ݇ݏ݋௡(ℎ − (ݕ − ீᇲ

௞೙
௡(ℎ݇݊݅ݏ −  	,(ݕ

(݉,݊ = 1,2 … )  
The unknown constants ܣ௡, ܤ௡(݊ = 1,2, … ) can be 

estimated numerically from the above system of linear 
equations (17) and (18) after truncating the infinite sum 
upto desired accuracy. We now proceed to determine the 
reflection and transmission coefficients by appropriate use 
of residue calculus method. 
5  REFLECTION AND TRANSMISSION COEFFICIENTS:  

We consider the following integral 

ܬ = ර
(ݖ)݂
ݖ − ݇௠

,ݖ݀ (݉ = 0,1,2, … )
஼ಿ

 

Here the function ݂(ݖ) has simple poles at ݖ =

,ଵݏ ,ଶݏ … , ݖ ௡, simple zeros atݏ = ݇ଵ,݇ଶ, … , ݇௡ and ݂(ݖ): 0 ቀ ଵ
√௭
ቁ 

as ݖ → ∞. Here, ܥே are the sequence of circles with radius 
ܴே which increases without bound as ܰ → ∞ avoiding the 
zeroes of the integral and all the poles and zeros are inside 
of it. Furthermore ܥே must not pass through (0,0). 

The Cauchy’s integral formula and residue theorem 
gives: 

݂(݇଴) = ଵ
ଶగ௜∮

௙(௭)
௭ି௞బ

ݖ݀ = ∑ (ோ௘௦(௙(௭))|௭ୀ௦೙)
௦೙ି௞బ

ஶ
௡ୀଵ஼ಿ

  (19) 

Assuming that ݂(݇଴) = −1, we find 

଴௠ߜ = ∑ (ோ௘௦(௙(௭))|௭ୀ௦೙)
௦೙ି௞బ

ஶ
௡ୀଵ   (20) 

Now comparing (19) and (17), we obtain 
௡ܸ = ݖ|(ݖ)݂)ݏܴ݁	ܣ =  .(௡ݏ
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Again, we consider the integral 

ܫ = ර
(ݖ)݂
ݖ + ݇௠

஼ಿ

,ݖ݀ (݉ = 0,1,2, … ), 

with the same property of the integrand function ݂(ݖ) as 
above. The matching conditions at ݔ = 0 can be combined 
to give: 

∑ ௏೙
௦೙ା௞బ

= − ଶ௜௞బோ

(௄మି௄భ)ேబభ൤௖௢௦௛௞బ(௛ି௬)ିಸ
ᇲ

ೖబ
௦௜௡௛௞బ(௛ି௬)൨

ஶ
௡ୀଵ   (21) 

The Cauchy’s residue theorem gives for ݉ = 0 and at 
ݖ = −݇଴ 

∑ ௏೙
௦೙ା௞బ

= ஶ(଴݇−)݂ܣ
௡ୀଵ . (22) 

Comparing (21) and (22), we obtain 
(଴݇−)݂ܣ = ଶ௜௞బோ

(௄మି௄భ)ேబభ൤௖௢௦௛௞బ(௛ି௬)ିಸ
ᇲ

ೖబ
௦௜௡௛௞బ(௛ି௬)൨

  (23) 

The function ݂(ݖ) can be taken as 

(ݖ)݂ = ௞బ
௭
∏ ቈ

ቀଵି ೥
ೖ೙
ቁቀଵିೖబೞ೙

ቁ

ቀଵି ೥
ೞ೙
ቁቀଵିೖబೖ೙

ቁ
቉ஶ

௡ୀଵ   (24) 

At ݖ = −݇଴, from (24), ݂(ݖ) gives: 

݂(−݇଴) = −∏ ቈ
ቀଵାೖబೖ೙

ቁቀଵିೖబೞ೙
ቁ

ቀଵାೖబೞ೙
ቁቀଵିೖబೖ೙

ቁ
቉ஶ

௡ୀଵ , (25) 

and replacing ܣ and ݂(−݇଴) in (22) we obtain: 

ܴ = ௞బି௦బ
௞బା௦బ

∏ ቈ
ቀଵାೖబೖ೙

ቁቀଵିೖబೞ೙
ቁ

ቀଵାೖబೞ೙
ቁቀଵିೖబೖ೙

ቁ
቉ஶ

௡ୀଵ . 

 Thus, 
ܴ = ௞బି௦బ

௞బା௦బ
݁ଶ௜ఈ, (26) 

where, 
ߙ = ∑ ቂି݊ܽݐଵ ቀ௞బ

௦೙
ቁ − ଵି݊ܽݐ ቀ௞బ

௞೙
ቁቃஶ

௡ୀଵ , (݊ = 1,2, … )  

To obtain the transmission coefficient, we consider the 
following relation: 

௡ܸ = ݖ|(ݖ)݂)ݏܴ݁	ܣ =  ௡).  (27)ݏ
Since we have ܤ଴ = ܶ,	 

௡ܸ = ௡ܤ ௡ܰ
ଶ ቂܿݏݏ݋௡(ℎ − (ݕ − ீᇲ

௦೙
௡(ℎݏ݊݅ݏ −  ቃ and hence we(ݕ

obtain, 
ܶ

=
2݇଴ܲ(ݏ଴ + ݇଴)

ଶܭ) − (ଵܭ ଴ܰ
ଵ

଴ܰ
ଶ ൤ܿݏ݋ℎ݇଴(ℎ − (ݕ − ᇱܩ

݇଴
ℎ݇଴(ℎ݊݅ݏ − ൨(ݕ ቂܿݏ݋ℎݏ଴(ℎ − (ݕ − ᇱܩ

଴ݏ
଴(ℎݏℎ݊݅ݏ − ቃ(ݕ

 

 (28) 
where, 

ܲ = ∏ ቈ
ቀଵାೞబ

ೖ೙
ቁቀଵାೞబೞ೙

ቁ

ቀଵାೖబೖ೙
ቁቀଵାೖబೖ೙

ቁ
቉ஶ

௡ୀଵ   (29) 

An alternative form of T can be obtained by using 
relation (14) and the expressions given by (28)-(29) as: 

|ܶ| = ଶ௞బ
௞బା௦బ

  (30) 

 
6  GRAPHS 

The expressions of the reflection and transmission 
coefficients given by (26) and (30) are computed 
numerically against the wave number of the incident wave 
for a fixed value of surface tension. The effect of bottom 
porosity is investigated on the values of the reflection and 
transmission coefficients by considering different values of 
the dimensionless porosity parameter ܩ′ℎ. The absolute 
values of the reflection and transmission coefficients are 
given by:  

ܴ =
݇଴ − ଴ݏ
݇଴ + ଴ݏ

 

ܶ =
2݇଴

݇଴ + ଴ݏ
 

These absolute values of the hydrodynamics coefficients 
are depicted in the fig.1 and fig.2 respectively for different 
values of the dimensionless porosity parameter ܩᇱℎ =
0.00, 0.3, 0.5 respectively. The surface tension parameter ܯ 
is fixed at 0.1. In fig.1, it is seen that as the value of the 
dimensionless porosity parameter ܩ′ℎ increases, the values 
of |ܴ| decrease rapidly. This may be attributed due to the 
presence of specific porous material at the bottom of the 
ocean which resists the wave field reflection by the 
discontinuity at the upper surface. The absolute values of 
the reflection coefficient is decreased due to the 
characteristic of the porous materials at the bottom. The 
reverse phenomena is observed in the fig.2 for the case of 
|ܶ|. As the value of the porosity parameter ܩ′ℎ increases, 
the values of |ܶ| also increase. This fact can be explained by 
the energy identity relation given by (14) in case of a 
difference in wave number. Hence the effect of porosity in 
the ocean bed does not violate the energy identity relation 

as given by (14) in presence of upper surface discontinuity. 
We also note that, in absence of the upper surface 
discontinuity, we have ݇଴ = ܴ ଴ and in that caseݏ = 0,ܶ = 1. 
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Fig.1: Reflection coefficient for different values of 
porosity parameter at a fixed M 

Fig.2: Transmission coefficient for different values of 
porosity parameter at a fixed M 
7  CONCLUSION 

The present study is concerned with scattering of 
surface wave by a discontinuity at the upper surface in a 
finite depth of water with porous bottom. The discontinuity 
arises due to presence of two types of semi-infinite inertial 
surfaces on either side of the origin. The inertial surfaces 
are also subject to surface tension. The eigen function 
matching technique and the residue calculus method have 
been made use of to determine analytical expressions of 
reflection and transmission coefficients. The magnitude of 
the hydrodynamic coefficients are plotted against wave 
number for different values of the porous parameter and 
for a fixed value of the surface tension parameter. From the 
analytical and numerical results, it is observed that the 
porous bottom has an effect on the absolute value of the 
hydrodynamic coefficients. 

The present investigation is significant in its 
applications to ocean engineering, marine sciences and 
coastal dynamics. 
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